Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.510
Filtrar
1.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560776

RESUMO

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Assuntos
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia Líquida , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo
2.
Sci Rep ; 14(1): 8272, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594253

RESUMO

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Assuntos
Proteínas de Transporte de Cátions , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Hemoglobinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Heme/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Ferro/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601738

RESUMO

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Assuntos
PPAR alfa , Staphylococcus aureus , Camundongos , Animais , PPAR alfa/metabolismo , Staphylococcus aureus/metabolismo , Ácido Oleico , Ácidos Graxos/metabolismo , Camundongos Knockout
4.
Int J Biol Macromol ; 265(Pt 2): 131067, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521328

RESUMO

Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.


Assuntos
Proteínas de Bactérias , Endopeptidases , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Escherichia coli , Staphylococcus aureus/metabolismo , Bactérias , Extratos Vegetais/química
5.
Bioorg Med Chem Lett ; 103: 129707, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492608

RESUMO

The design and development of novel antimicrobial agents are highly desired to combat the emergence of medication resistance against microorganisms that cause infections. A series of new pyrimidine-linked thiazolidinedione derivatives (5a-j) were synthesized, characterized, and their antimicrobial properties assessed in the current investigation. Here, novel pyrimidine-linked thiazolidinedione compounds were designed using the molecular hybridization approach. Elemental and spectral techniques were used to determine the structures of the synthesized hybrids. The majority of compounds showed encouraging antibacterial properties. Among the active compounds, 5g, 5i, and 5j showed 1.85, 1.15, and 1.38 times the activity of streptomycin against S. aureus, respectively, with MIC values of 6.4, 10.3, and 8.6 µM. With MIC values of 10.8, 21.9, and 15.4 µM, respectively, the compounds 5g, 5i, and 5j showed 2.14, 1.05, and 1.50 times the activity of linezolid against the methicillin-resistant S. aureus (MRSA) strain. Furthermore, when compared to the reference medications, compounds 5g, 5i, and 5j demonstrated broad-range antimicrobial efficacy against all tested strains of bacteria and fungus. Out of all the compounds that were investigated, compounds 5g, 5i, and 5j showed noteworthy anti-tubercular activity. 5g is the most effective, 1.59 times more effective than reference drug isoniazid. To anticipate the binding manner, the synthesized potent compounds were subjected to molecular docking into the active binding site of MRSA and the mycobacterial membrane protein large 3 (MmpL3) protein. The compounds 5g, 5i, and 5j may eventually serve as lead compounds in the search for antimicrobial and anti-TB therapeutic agents.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Tiazolidinedionas , Antituberculosos , Simulação de Acoplamento Molecular , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Antibacterianos/química , Tiazolidinedionas/farmacologia , Pirimidinas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular
6.
mBio ; 15(4): e0348323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511930

RESUMO

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Tripsina/metabolismo , Biofilmes , Infecções Estafilocócicas/metabolismo
7.
Sci Total Environ ; 923: 171331, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428609

RESUMO

Staphylococcus aureus is one of the most frequently detected foodborne pathogens in cold chain foods. Worryingly, small colony variants (SCVs) can survive in cold environments for a long time and can revert to rapidly growing cells in suitable environments, causing serious food safety issues. This study investigated the underlying mechanism of SCV formation at low temperature (4 °C) via comparative genomics. Multilocus sequence typing (MLST) of 105 strains of S. aureus was divided into 9 sequence types. The ST352 strains exhibited the greatest tolerance to low temperature, with a mean reduction in survival rate of 10.34 % (p < 0.05). Comparative genomics revealed a total of 1941 core genes in the three S. aureus strains, and BB-1 had 468 specific genes, which were enriched mainly in translation, DNA recombination, DNA repair, metabolic pathways, two-component systems, and quorum sensing. Molecular docking analysis revealed that the binding of the RsbW protein to the SigB protein of BB-1 decreased due to base mutations in rsbW, while the binding to the RsbV protein was enhanced. In addition, the results of real-time quantitative PCR showed that the RsbV-RsbW/SigB system of BB-1 may play a role in the low-temperature survival of S. aureus and the formation of SCVs. These results suggest that genes specific to BB-1 may contribute to the mechanism of adaptation to low temperature and the formation of SCVs. This study helps elucidate the causes of SCV formation by S. aureus at low temperature at the molecular level and provides a basis for exploring the safety control of cold chain food environments.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tipagem de Sequências Multilocus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação de Acoplamento Molecular , Temperatura , Genômica , Antibacterianos/metabolismo
8.
Int J Biol Macromol ; 264(Pt 2): 130631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453114

RESUMO

Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and ß-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.


Assuntos
Tribolium , Animais , Tribolium/genética , Tribolium/metabolismo , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Simulação de Acoplamento Molecular , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
9.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38460934

RESUMO

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Assuntos
Lipossomos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Sesquiterpenos Policíclicos , Etídio , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos
10.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480900

RESUMO

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo , Constrição , Óxido Nítrico Sintase/metabolismo
11.
mBio ; 15(4): e0338323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38415646

RESUMO

We previously demonstrated that mutation of sarA in Staphylococcus aureus limits biofilm formation, cytotoxicity for osteoblasts and osteoclasts, and virulence in osteomyelitis, and that all of these phenotypes can be attributed to the increased production of extracellular proteases. Here we extend these studies to assess the individual importance of these proteases alone and in combination with each other using the methicillin-resistant USA300 strain LAC, the methicillin-susceptible USA200 strain UAMS-1, and isogenic sarA mutants that were also unable to produce aureolysin (Aur), staphopain A (ScpA), staphylococcal serine protease A (subsp.), staphopain B (SspB), and the staphylococcal serine protease-like proteins A-F (SplA-F). Biofilm formation was restored in LAC and UAMS-1 sarA mutants by subsequent mutation of aur and scpA, while mutation of aur had the greatest impact on cytotoxicity to mammalian cells, particularly with conditioned medium (CM) from the more cytotoxic strain LAC. However, SDS-PAGE and western blot analysis of CM confirmed that mutation of sspAB was also required to mimic the phenotype of sarA mutants unable to produce any extracellular proteases. Nevertheless, in a murine model of post-traumatic osteomyelitis, mutation of aur and scpA had the greatest impact on restoring the virulence of LAC and UAMS-1 sarA mutants, with concurrent mutation of sspAB and the spl operon having relatively little effect. These results demonstrate that the increased production of Aur and ScpA in combination with each other is a primary determinant of the reduced virulence of S. aureus sarA mutants in diverse clinical isolates including both methicillin-resistant and methicillin-susceptible strains.IMPORTANCEPrevious work established that SarA plays a primary role in limiting the production of extracellular proteases to prevent them from limiting the abundance of S. aureus virulence factors. Eliminating the production of all 10 extracellular proteases in the methicillin-resistant strain LAC has also been shown to enhance virulence in a murine sepsis model, and this has been attributed to the specific proteases Aur and ScpA. The importance of this work lies in our demonstration that the increased production of these same proteases largely accounts for the decreased virulence of sarA mutants in a murine model of post-traumatic osteomyelitis not only in LAC but also in the methicillin-susceptible human osteomyelitis isolate UAMS-1. This confirms that sarA-mediated repression of Aur and ScpA production plays a critical role in the posttranslational regulation of S. aureus virulence factors in diverse clinical isolates and diverse forms of S. aureus infection.


Assuntos
Metaloendopeptidases , Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Staphylococcus aureus/metabolismo , Virulência/genética , Modelos Animais de Doenças , Meticilina/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
12.
Int J Biol Macromol ; 262(Pt 1): 130069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340918

RESUMO

Squid pen (SP) is a valuable source of protein and ß-chitin. However, current research has primarily focused on extracting ß-chitin from SP. This study innovatively extracted both SP protein hydrolysates (SPPHs) and SP ß-chitin (SPC) simultaneously using protease hydrolysis. The effects of different proteases on their structural characteristics and bioactivity were evaluated. The results showed that SP alcalase ß-chitin (SPAC) had the highest degree of deproteinization (DP, 98.19 %) and SP alcalase hydrolysates (SPAH) had a degree of hydrolysis (DH) of 24.47 %. The analysis of amino acid composition suggested that aromatic amino acids accounted for 17.44 % in SPAH. Structural characterization revealed that SP flavourzyme hydrolysates (SPFH) had the sparsest structure. SPC exhibited an excellent crystallinity index (CI, over 60 %) and degree of acetylation (DA, over 70 %). During simulated gastrointestinal digestion (SGD), the hydroxyl radical scavenging activity, ABTS radical scavenging activity, Fe2+ chelating activity, and reducing power of the SPPHs remained stable or increased significantly. Additionally, SPFC exhibited substantial inhibitory effects on Staphylococcus aureus and Escherichia coli (S. aureus and E. coli), with inhibition circle diameters measuring 2.4 cm and 2.1 cm. These findings supported the potential use of SPPHs as natural antioxidant alternatives and suggested that SPC could serve as a potential antibacterial supplement.


Assuntos
Peptídeo Hidrolases , Hidrolisados de Proteína , Animais , Peptídeo Hidrolases/metabolismo , Hidrólise , Hidrolisados de Proteína/química , Decapodiformes/química , Quitina , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Antioxidantes/química , Subtilisinas/metabolismo
13.
J Bacteriol ; 206(3): e0044723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334326

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.


Assuntos
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiologia , Sinais (Psicologia) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiologia , Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Glucose/metabolismo
14.
Microbiol Res ; 282: 127635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340572

RESUMO

Bacteria develop tolerance after transient exposure to antibiotics, and tolerance is a significant driver of resistance. The purpose of this study is to evaluate the mechanisms underlying tolerance formation in vancomycin-intermediate Staphylococcus aureus (VISA) strains. VISA strains were cultured with sub-minimum inhibitory concentrations (sub-MICs) of vancomycin. Enhanced vancomycin tolerance was observed in VISA strains with distinct genetic lineages. Western blot revealed that the VISA protein succinylation (Ksucc) levels decreased with the increase in vancomycin exposure. Importantly, Ksucc modification, vancomycin tolerance, and cell wall synthesis were simultaneously affected after deletion of SacobB, which encodes a desuccinylase in S. aureus. Several Ksucc sites were identified in MurA, and vancomycin MIC levels of murA mutant and Ksucc-simulated (MurA(K69E) and MurA(K191E)) mutants were reduced. The vancomycin MIC levels of K65-MurA(K191E) in particular decreased to 1 mg/L, converting VISA strain K65 to a vancomycin-susceptible S. aureus strain. We further demonstrated that the enzymatic activity of MurA was dependent on Ksucc modification. Our data suggested the influence of vancomycin exposure on bacterial tolerance, and protein Ksucc modification is a novel mechanism in regulating vancomycin tolerance.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Vancomicina/farmacologia , Vancomicina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Vancomicina , Regulação para Baixo , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia
15.
Int J Biol Macromol ; 262(Pt 2): 130039, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354917

RESUMO

There is mounting evidence that the uterine microbiota has an important role in the pathogenesis of endometritis, with invasion of pathogenic bacteria being a main cause of uterine microbial imbalance. However, mechanisms of uterine microbiota resistance to pathogen invasion remain unclear. In this study, an intrauterine infusion of Staphylococcus aureus was used as a bovine endometritis model; it significantly increased abundance of pathogenic bacteria (Streptococcus, Helccoccus, Fusobacterium, and Escherichia-Shigella) and significantly decreased abundance of probiotics (Allstipes, Bacteroides, Phascolarctobacterium, Romboutsia, and Prevotella). In addition, the metabolite aloe-emodin was positively correlated with Prevotella and based on combined analyses of omics and probiotics, the presence of its metabolite aloe-emodin in the uterus at least partially resisted Staphylococcus aureus invasion. Therefore, Aloe-emodin has potential for regulating microbial structure and preventing endometritis.


Assuntos
Emodina , Endometrite , Infecções Estafilocócicas , Feminino , Humanos , Animais , Bovinos , Endometrite/microbiologia , Endometrite/patologia , Staphylococcus aureus/metabolismo , Útero/patologia , Bactérias , Infecções Estafilocócicas/patologia
16.
Antimicrob Agents Chemother ; 68(3): e0134023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38364015

RESUMO

We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Nafcilina , beta-Lactamas/metabolismo , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Oxacilina/farmacologia , Oxacilina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
17.
J Bacteriol ; 206(2): e0033723, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299858

RESUMO

Genome sequencing has demonstrated that Staphylococcus aureus encodes arginine biosynthetic genes argDCJBFGH synthesizing proteins that mediate arginine biosynthesis using glutamate as a substrate. Paradoxically, however, S. aureus does not grow in a defined, glutamate-replete medium lacking arginine and glucose (CDM-R). Studies from our laboratory have found that specific mutations are selected by S. aureus that facilitate growth in CDM-R. However, these selected mutants synthesize arginine utilizing proline as a substrate rather than glutamate. In this study, we demonstrate that the ectopic expression of the argDCJB operon supports the growth of S. aureus in CDM-R, thus documenting the functionality of this pathway. Furthermore, suppressor mutants of S. aureus JE2 putA::Tn, which is defective in synthesizing arginine from proline, were selected on CDM-R agar. Genome sequencing revealed that these mutants had compensatory mutations within both spoVG, encoding an ortholog of the Bacillus subtilis stage V sporulation protein, and sarA, encoding the staphylococcal accessory regulator. Transcriptional studies document that argD expression is significantly increased when JE2 spoVG sarA was grown in CDM-R. Lastly, we found that a mutation in ahrC was required to induce argD expression in JE2 spoVG sarA when grown in an arginine-replete medium (CDM), suggesting that AhrC also functions to repress argDCJB in an arginine-dependent manner. In conclusion, these data indicate that the argDCJB operon is functional when transcribed in vitro and that SNPs within potential putative regulatory proteins are required to alleviate the repression.IMPORTANCEAlthough Staphylococcus aureus has the capability to synthesize all 20 amino acids, it is phenotypically auxotrophic for several amino acids including arginine. This work identifies putative regulatory proteins, including SpoVG, SarA, and AhrC, that function to inhibit the arginine biosynthetic pathways using glutamate as a substrate. Understanding the ultimate mechanisms of why S. aureus is selected to repress arginine biosynthetic pathways even in the absence of arginine will add to the growing body of work assessing the interactions between metabolism and S. aureus pathogenesis.


Assuntos
Ácido Glutâmico , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácido Glutâmico/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Prolina/genética , Prolina/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
Microbiol Spectr ; 12(3): e0292723, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319074

RESUMO

Staphylococcus species in food produce Staphylococcal enterotoxins (SEs) that cause Staphylococcal food poisoning (SFP). More than 20 SE types have been reported, among which Staphylococcal enterotoxin A (SEA) has been recognized as one of the most important SEs associated with SFP. However, the regulatory mechanisms underlying its production remain unclear. Previously, we identified a major SFP clone in Japan, CC81 subtype-1, which exhibits high SEA production. In this study, we attempted to identify the factors contributing to this phenomenon. Thus, we demonstrated that the attenuation of the activity of endogenous regulator, Staphylococcal accessory regulator S (SarS), and the lysogenization of a high SEA-producing phage contributed to this phenomenon in CC81 subtype-1. Furthermore, our results indicated that SarS could directly bind to the promoter upstream of the sea gene and suppress SEA expression; this low SarS repression activity was identified as one of the reasons for the high SEA production observed. Therefore, we revealed that both exogenous and endogenous factors may probably contribute to the high SEA production. Our results confirmed that SE production is a fundamental and critical factor in SFP and clarified the associated production mechanism while enhancing our understanding as to why a specific clone frequently causes SFP. IMPORTANCE: The importance of this study lies in its unveiling of a molecular regulatory mechanism associated with the most important food poisoning toxin and the evolution of Staphylococcal food poisoning (SFP)-associated clone. SFP is primarily caused by Staphylococcus aureus, with Staphylococcal enterotoxin A (SEA) being commonly involved in many cases. Thus, SEA has been recognized as a major toxin type. However, despite almost a century since its discovery, the complete mechanism of SEA production is as yet unknown. In this study, we analyzed an SEA-producing SFP clone isolated in East Asia and discovered that this strain, besides acquiring the high SEA-producing phage, exhibits remarkably high SEA production due to the low activity of SarS, an intrinsic regulatory factor. This is the first report documenting the evolution of the SFP clone through the coordinated action of exogenous mobile genetic factors and endogenous regulators on this notorious toxin.


Assuntos
Bacteriófagos , Intoxicação Alimentar Estafilocócica , Humanos , Prófagos , Enterotoxinas/genética , Staphylococcus/metabolismo , Staphylococcus aureus/metabolismo , Bacteriófagos/metabolismo , Microbiologia de Alimentos
19.
Int J Nanomedicine ; 19: 1539-1556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406603

RESUMO

Purpose: Persistent Infections and inflammation are associated with impaired wound healing in diabetic patients. There is a pressing demand for innovative antimicrobial strategies to address infections arising from antibiotic-resistant bacteria. Polymer-modified gold nanoparticles (AuNPs) show broad-spectrum antibacterial properties and significant biocompatibility. This study investigated the antibacterial and wound healing efficacy of hydrogel dressings conjugated with chitosan-AuNPs in diabetic model rats. Methods: Chitosan (CS)-functionalized gold nanoparticles (CS-AuNPs) were incorporated into hydrogel dressings (Gel/CS-AuNPs), which were formulated through the chemical cross-linking of gelatin with sodium alginate (SA). The basic characteristics of Gel/CS-AuNPs were analyzed by TEM, SEM, XRD, and UV-visible spectra. Rheological, swelling, degradation, and adhesive properties of Gel/CS-AuNPs were also determined. In vitro anti-bactericidal effects of the Gel/CS-AuNPs were analyzed with E. coli, S. aureus, and MRSA. In vitro biocompatibility of the Gel/CS-AuNPs was evaluated using NIH3T3 cells. The in vivo antibacterial and wound healing efficacy of the Gel/CS-AuNPs was analyzed in the diabetic wound model rats. Histological and immunofluorescence staining were performed to determine the status of angiogenesis, epithelization, inflammation response, and collagen deposition. Results: Gel/CS-AuNPs demonstrated significant high biodegradability, water absorption bactericidal, and biocompatibility, and slight adhesiveness. Gel/CS-AuNPs exhibited pronounced antibacterial efficacy against gram-negative, gram-positive, and MRSA in a CS-AuNPs-dose-dependent manner. In the diabetic wound model rats, Gel/CS-AuNPs effectively killed MRSA, reduced inflammation, and promoted angiogenesis and collagen deposition and remodeling at the wound site. As a result, Gel/CS-AuNPs expedited the recovery process for infected diabetic wounds. Among the hydrogels with different CS-AuNPs concentrations, Gel/CS-Au25 with 25% CS-AuNPs showed the best bactericidal and wound healing performance. Conclusion: Gel/CS-AuNPs significantly improve the healing of MRSA-infected diabetic wounds in the rat model. Therefore, Gel/CS-AuNPs show great promise for the treatment of diabetic infection wound healing.


Assuntos
Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Humanos , Camundongos , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Ouro/química , Staphylococcus aureus/metabolismo , Hidrogéis/química , Escherichia coli , Células NIH 3T3 , Nanopartículas Metálicas/química , Cicatrização , Colágeno/metabolismo , Bactérias/metabolismo , Inflamação
20.
Sci Adv ; 10(9): eadj3864, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416829

RESUMO

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the Staphylococcus aureus WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices. TarL is composed of an amino-terminal immunoglobulin-like domain and a carboxyl-terminal glycosyltransferase-B domain for ribitol-phosphate polymerization. The active site of the latter is complexed to donor substrate cytidine diphosphate-ribitol, providing mechanistic insights into the catalyzed phosphotransfer reaction. Furthermore, the active site is surrounded by electropositive residues that serve to retain the lipid-linked acceptor for polymerization. Our data advance general insight into the architecture and membrane association of the still poorly characterized monotopic membrane protein class and present molecular details of ribitol-phosphate polymerization that may aid in the design of new antimicrobials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Microscopia Crioeletrônica , Staphylococcus aureus Resistente à Meticilina/metabolismo , Virulência , Ribitol/metabolismo , Ácidos Teicoicos/análise , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Fosfatos/metabolismo , Resistência Microbiana a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...